
based on the analysis of the data in [2]. A comparison of the values of the coefficient 
of thermal conductivity calculated according to this formula for light homologs with the 
recommended values [3] showed that the disagreement between the experimental values and the 
computed values does not exceed +2.1%. Therefore, the proposed formula (I) also describes 
with adequate accuracy the available experimental data on the thermal conductivity of light 
homologs of the formiates that we studied. Thus there is the possibility of calculating 
X = f(T) for formiates that have not been studied or are difficult to study experimentally, 
thereby avoiding laborious and expensive investigations. 

. 

2. 

3. 

LITERATURE CITED 

R. A. Mustafaev, Thermophysical Properties of Hydrocarbons for High Values of the State 
Parameters [in Russian], Energiya, Moscow (1980). 
G. Kh. Mukhamedzyanov and A. G. Usmanov, Thermal Conductivity of Organic Liquids [in 
Russian], Khimiya, Moscow (1971). 
N. B. Vargaftik, L. P. Filippov, A. A. Tarz~msnov, and E. E. Totskii, Thermal Conductiv- 
ity of Liquids and Gases [in Russian], Standartov, Moscow (1978). 

NONISOTHERMAL TRANSFER PROCESSES IN A SINGLE COMPONENT GAS 

T. N. Abramenko UDC 5 3 3 . 2 7 1 : 5 3 6 . 2 3  

Expressions relating the true thermal conductivity coefficient of a gas to the ef- 
fective value measured by various experimental methods are obtained. 

All of the methods used for experimental determination of gas thermal conductivity are 
based on the principle of heat transfer from a Solid surface preheated to the required temp- 
erature and maintenance of a temperature gradient within a system containing the gas to be 
studied. 

Existing thermal conductivity measurement methods can be divided into two classes: 

I) pressure gradient present in system (0 = const): non-steady-state heated filament 
method, steady-state plane layer and thermal conductivity column methods; 

2) constant gas pressure (p~const): non-steady-state shock tube method, steady-state 
heated filament method, etc. 

All these methods only permit determination of an effective thermal conductivity which 
is never equal to the true value because of various side effects. 

With consideration of the classification presented above, we will examine nonisothermal 
transfer processes within a single component gas, neglecting viscous momentum transfer. The 
linear phenomenological expressions relating energy and mass-transfer processes in any single 
component system will be written in the form [i] 

= L,,2  + L = (1) 

If the gas is ideal and the specific volume of the system is practically constant (p= 
const, p s&consf), then we can express the thermodynamic forces in the form of [I] 

XcJ=--vT/T2,  X M = - -  vvp _i hvT 
T ~ T ~ ( 2 )  

Considering Eq. (2), we rewrite Eq. (i) : 

Ju L~le ( 5 LnkT ) V T (3 )  
= - - ~  VP + L1~ T ~ , mp 2 m 
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JO L"I ( 5 L~xkT ) V T 
= -- VP + L2z T z �9 (4) mp 2 m 

In Eq. (3) the coefficient of 7p characterizes mass transfer under the action of pres- 
sure difference, while the coefficient of VT characterizes the action of the temperature 
gradient. In Eq. (4) the coefficient of Vp characterizes energy transfer due to the thermo- 
mechanical effect, while the coefficient of VT is the thermal conductivity coefficient. 

Equations (3), (4) can be written in terms of effective thermal conductivity Xef and 
dlffuslon Def coefficients with consideration of the fact that 

where 

~,~ Lx~ ( \ 3 )  (5) 
= vT---Oo vr, 

and Q* = - -  L2, kT 
L~s m 

q, Ln kT Lit = - - . ;  Def= a, 0 < s t <  1; 
L12 m T ~ 

7,2 = -- ~efV T, 

Initially we will limit ourselves to the steady-state mass transfer process 

1---~-q vT=O.  

Whence 

(6) 

3 kT 
L12 = ~ Ln" m 

We express the coefficient Lzl which characterizes nonisothermal diffusion caused by a 
pressure difference in the form 

Ln = bpDm/k, (7) 

where b is some proportionality coefficient. According to the Onsager reciprocity theorem: 

3 bpDT. (8) 

We will evaluate Q* for the steady-state process. For this purpose, substituting Eq. (8) in 
L~IkT 

the expression for Q * - - - ,  we obtain 
Lnm 

Q. = 3 L~'bpD (k/m) r z = bpDi[% 
2 " 

since L22/T 2 = ~tr = fncv, Cv = (3/2)(k/m), f = 2.5 is the Aiken factor, pDln = (6/5)A*, 
A* = Qt2,-~)*/~ x,1}* 

With the aid of Eq. (3) we obtain the well-known expression for thermodynamic pressure 
difference in the steady state [I] : AplAT -- -- 8*/vT, or with consideration of the fact that 

5 kT 
Alnp=A|nT, we find pv----0* ~ kT/m, where O* -- h--(Li,/Li,), h=-- 

2 m 

To describe the process of mass transfer in the nonsteady state we use Eq. (3): 

L,, [ A l n  ( L n )  1 = q* P  fAr, + I h 
" Llz 

with the aid of which we obtain 
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where O < a < l ,  a =  De'fTZ 
Llz 

h - -  L12 (1--=) 
Ap : Lu OH 
AT vT vT 

Consequently, for an ideal gas 

po = - -  On ----_ __ __kT (1 -- a). 
In  

According to Eq. (6), the relationship between the true (Itr) and effective thermal 
conductivity coefficient, which is measured by the non-steady-state heated filament method 
(we assume that a ffi 0.6) has the form 

( 3 b, PD )-1 ,  b > O ,  t.tr = X~  1 y 1] 

while the relationship between the true thermal conductivity and the effective value mea- 
sured by the stationary plane layer method has the form 

)'tr = Z e f ( 1 - - 3 b - P D  ) - 1 ' 5  b > 0 .  

In the case where the system specific v~lume changes (p ~const, p= const), in order to find 
-+ 

an expression for the thermodynamic forces X U and XM, appearing in Eq. (i), it is necessary 
�9 to use the expression 

TdS = dU - -  ~dM + pdV. (9) 

Differentiating Eq. (9) with respect to dU at M = const, we obtain [2] 

X u  = V -6 V T dU " = - - ' - 3  r 2 "" (lO) 

Differentiating Eq. (9) with respect to dM at U = const, we find 

X,~z = - -  V + V T d M  = m 

Using Eqs. (I0), (11) we rewrite Eq. (1) in the form 

JM Lu k 5 L1, ( 3 , )  
--  - - V P  - -  l - - - ~ q  V T, p m 3 T z 

= - -  VP 1 -- Q* V T, 
9 m 3 T z 

(12) 

(13) 

where 

q,  = Lu  --',kT Q, = __L21 kT 

LI~ m L~  m 

Lu  k 
In Eq. (12) the coefficient of Vp, equal to --= aD, characterizes nonisothermal 

p m 
diffusion, which develops due to density differences, the temperature gradient coefficient 

--~ T 2 ---~q is related to mass transfer produced by temperature difference. 

Nonisothermal diffusion was studied experimentally by the authors of [3]. 

L21k 
In Eq. (13) the coefficient ~ standing before VO characterizes energy transfer due 

The coefficient 5 L~2 I-- Q* before VT 
3 T 2 

to density difference, as discussed in [4]. 

is the thermal conductivity coefficient. 
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We will simplify Eqs. (12), (13), assuming that vlnp =--vInT: 

.7 . ,= 5 Li2 
( 1 - -  0,g q*) vT  = - -  Da VT, 

3 T ~ 

= 5 _ 0 . 9  O*)  V T  = - -    evT. 
3 T z 

We will limit ourselves to steady-state mass transfer, setting Eq. 
for this purpose. Then 

(14) 

(15) 

(14) equal to zero 

We define 

L,s Lsx 0,9 Ln leT 
m 

L n = a p___.~D (16) 
( k / m )  ' 

where a is some proportionality coefficient. With consideration of Eq. (16) 

L12 = L,x = 0,9 apDT. (17) 

Substituting Eq. (17) in the expression for Q* L~s kT --= - - ,  we find 
L2~ m 

Q* = 0.24 a --,PD (18) 
n 

Then using Eq. (15), we obtain 

3 
Zu =--~-~ef (1 - -  0.216apD/, l)-*,  a > 0 .  (19) 

This expression establishes the relationship between the true gas thermal conductivity 
and the effective value determined experimentally, for example, by the steady-state heated 
filament method. 

We will now consider the nonsteady-state of the mass-transfer process: 

where D~ -- 
5 L n  

3 TZ 

JM --  5 L,2 (1 - -  0 .9 q*) V T = - -  DefVT, 
3 T u 

--~; 0<~< I. Considering that 1 -- 0.9q* = a, we obtain 

Lls ---: Lsl = 0.9 kT Ln(1 -- ix)  -1.  (20) 
m 

We will now write an expression for the effective gas thermal conductivity measured by 
the non-steady-state shock tube method (%xef), using the expression for total energy flux 

J r =  v +  = - -  ~ e f v T ,  

and c o n s i d e r i n g  t h e  f a c t §  in  t h e  t h e r m a l  c o n d u c t i v i t y  measu remen t  e x p e r i m e n t  t h e  g a s  
moves a s  a who l e .  Here  J U i s  t h e  n o r m a l i z e d  e n e r g y  f l u x .  

The s t a t i o n a r y  t h e r m a l  c o n d u c t i v i t y  c o e f f i c i e n t  m e a s u r e d ,  f o r  e x a m p l e ,  b y  t h e  s t e a d y -  
s t a t e  h e a t e d  f i l a m e n t  method (Xzef )  can  be  c h a r a c t e r i z e d  by  t h e  e x p r e s s i o n  

-Ju = - -  ~.~efV T - -  hJ~ (Llef q- ~0) v T  = - -  ~ ~fvT;  ~0 = hDef, 

whence ~ l e f  = ~2ef  -- X0ef ,  i . e . ,  X l e f  < X2ef ,  which  i s  c o n f i r m e d  by e x p e r i m e n t a l  d a t a .  

It can be shown that the true gas thermal conductivity coefficient can be expressed in 
terms of the effective coefficient measured by the shock tube method in the following manner 
(it is assumed that ~ -- 0.76): 

~ = - ~  1 + a  ~r a < O .  
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The relationships obtained herein may be used to calculate true gas thermal conductiv- 
ity over a wide temperature range from experimental data obtained by various methods. 

NOTATION 

U, energy; T, temperature; p, pressure; p, density; V, volume; v, specific volume; S, 
entropy; h, specific enthalpy; M, gas mass; m, molecular mass; Lii, Lij, phenomenological 
coefficients; ~, thermal conductivity coefficient; ktr, true thermal conductivity; kef, ef- 
fective thermal conductivity; D, self-diffusion coefficient; n, viscosity coefficient; cV, 
specific heat at constant volume; k, Boltzmann's constant; 8*, heat of transfer. 
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AN ANALYTICAL MODEL FOR REVERSIBLE RADIATION EFFECTS ON POLYMER SPECIFIC HEAT 

B. A. Briskman UDC 678.742:046 

A study is made of the energy balance in gas release by radiation in polymers as 
one of the possible mechanisms for reversible effects on the specific heat. 

There are papers on irreversible radiation effects on the specific heats of polymers 
for polyethylene [1-3] and polystyrene [2, 4]. The effects are usually related to macro- 
structural transformations on irradiation and are examined when the radiation ceases. 

Nothing is known about the reversible (instantaneous) effects on the specific heats of 
polymers. Moreover, it is not even clear whether such changes actually occur, although it 
is logical to assume that short-lived radiolysis products may affect individual modes in the 
collective vibrations (individual segments or the polymer chain as a whole) and can thus give 
rise to reversible effects. 

We have examined one of the possible mechanisms for reversible change in the specific 
heat associated with the thermodynamics of gas production by radiolysis. 

I. Theoretical Analysis. Although nearly all of the absorbed energy ultimately goes 
to heat the specimen, some is used in producing cross-linking chemical bonds, transvinylene 
unsaturation, etc. A certain fraction of the energy accumulates in the radiolytic gas in the 
freevolume of the polymer. 

If the relative rate of diffusion to the surface is sufficiently small, the gas pressure 
gradually increases and attains a certain critical value Pcr corresponding to the recrystal- 
lization stress ~y (the yield point). From this time on, gas bubbles are formed, whose number 
and sizes gradually increase. This volume change occurs essentially at constant Pcr, since 
the stretching curve for an unoriented crystallized polymer is as shown in Fig. i. Bubble 
growth corresponds to the part AB on the deformation curve. 

The gas performs work pdv in this isobaric process. There is correspondingly a change 
in the internal energy du. The total amount of heat dq supplied to the gas is 
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